Sains Malaysiana 53(10)(2024):
3355-3367
http://doi.org/10.17576/jsm-2024-5310-10
Toxicological Evaluation of Sargassum polycystum in Mice with
Loperamide-Induced Constipation
(Penilaian Toksikologi Sargassum polycystum pada Tikus dengan Sembelit Akibat Loperamide)
CHITTIPONG TIPBUNJONG1,*, TANAPORN
HENGPRATOM1, SARANYA PEERAKIETKHAJORN2, JARUWAN MAYAKUN2,
NAWIYA HUIPAO1, PISSARED KHUITUAN1, PIYAPORN SURINLERT3 & CHUMPOL PHOLPRAMOOL4
1Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
2Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
3Chulabhorn International College of Medicine, Thammasat University,
Pathum-Thani 12120, Thailand
4Department of
Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
Received: 23 December
2023/Accepted: 21 August 2024
Abstract
Constipation gradually increases in people after the age of
50 years leading to difficulty in stool passage. Until now, there have
been no effective drugs without side effects. This study investigated the
preventive potential and toxicity of Sargassum polycystum extract (SPE) against
loperamide-induced constipation in mice. Daily oral administration of SPE (100,
500 and 1000 mg/kg) for 14 days significantly increased defecation
frequency in constipation mice. Additionally, no significant differences in
blood haematological and biochemical indices between the control, constipation
and SPE-treated groups were detected. Histopathological examinations revealed
non-toxic effects in liver, kidney and colon tissue samples from the
SPE-treated groups compared with the control and constipation groups. Real-time
polymerase chain reaction showed that the administration of SPE significantly
modulated Saa3, Odc1 and Clu expressions that promote the health of
living organisms compared with the control group. Overall, this study showed
that daily oral administration of Sargassum polycystumfor 14 days could prevent
constipation without any adverse effects. Sargassum polycystumis suitable for further use as a
supplement or drug to manage constipation.
Keywords: Constipation; histopathology; Sargassum sp.; seaweed; toxicity
Abstrak
Sembelit berlaku secara beransur-ansur kepada orang berusia selepas 50 tahun yang membawa kepada kesukaran untuk membuang najis. Sehingga kini, tiada ubat yang berkesan tanpa kesan sampingan. Penyelidikan ini mengkaji potensi pencegahan dan ketoksikan ekstrak Sargassum polycystum (SPE) terhadap sembelit yang disebabkan oleh
loperamide pada tikus. Administrasi oral harian SPE (100, 500 dan 1000 mg/kg) selama 14 hari meningkatkan kekerapan buang air besar dengan ketara pada tikus sembelit. Selain itu, tiada perbezaan ketara dalam indeks hematologi dan biokimia darah antara kumpulan kawalan, sembelit dan rawatan SPE dikesan. Pemeriksaan histopatologi mendedahkan kesan bukan toksik dalam sampel tisu hati, buah pinggang dan kolon daripada kumpulan yang dirawat SPE berbanding kumpulan kawalan dan sembelit. Tindak balas rantai polimerase masa nyata menunjukkan bahawa administrasi SPE memodulasi pengekspresan Saa3, Odc1 dan Clu dengan ketara yang menggalakkan kesihatan organisma hidup berbanding dengan kumpulan kawalan. Secara keseluruhannya, kajian ini menunjukkan bahawa administrasi Sargassum polycystum secara oral setiap hari selama 14 hari dapat mengelakkan sembelit tanpa sebarang kesan buruk. Sargassum polycystumsesuai untuk kegunaan selanjutnya sebagai suplemen atau ubat untuk menguruskan sembelit.
Kata kunci: Histopatologi, ketoksikan; rumpai laut; Sargassum sp., sembelit
REFERENCES
Araújo, M.C.D.P.M., Barcellos, N.M.S., de Abreu Vieira, P.M., Gouveia,
T.M., Guerra, M.O., Peters, V.M. & Saúde-Guimarães,
D.A. 2017. Acute and sub chronic toxicity study of aqueous extract from the
leaves and branches of Campomanesia velutina (Cambess) O. Berg. Journal
of Ethnopharmacology 201: 17-25.
Araújo, M.M. & Botelho, P.B. 2022. Probiotics, prebiotics, and synbiotics in chronic constipation: Outstanding aspects to
be considered for the current evidence. Frontiers
in Nutrition 9: 935830.
Brownlee, I.A. 2011. The physiological roles of dietary fibre. Food Hydrocolloids 25(2): 238-250.
Chait, A., den Hartigh, L.J., Wang, S.,
Goodspeed, L., Babenko, I., Altemeier, W.A. & Vaisar,
T. 2020. Presence of serum amyloid A3 in mouse plasma is dependent on the
nature and extent of the inflammatory stimulus. Scientific Reports 10(1): 10397.
Chen, R., Chen, Q., Zheng, J., Zeng, Z., Chen, M., Li, L. & Zhang,
S. 2023. Serum amyloid protein A in inflammatory bowel disease: from bench to
bedside. Cell Death Discovery 9(1):
154.
Chen, X., Wang, S., Mao, X., Xiang, X., Ye, S., Chen, J., Zhu, A., Meng,
Y., Yang, X., Peng, S., Deng, M. & Wang, X. 2023. Adverse health effects of
emerging contaminants on inflammatory bowel disease. Frontiers in Public Health 11: 1140786.
Cherbut, C., Ferrier, L., Rozé, C., Anini, Y., Blottière, H., Lecannu, G. &
Galmiche, J.P. 1998. Short-chain fatty acids modify colonic motility through
nerves and polypeptide YY release in the rat. American Journal of Physiology-Gastrointestinal and Liver Physiology 275(6): G1415-G1422.
Chichlowski, M., Croom, J., McBride, B.W., Havenstein, G.B. & Koci, M.D. 2007.
Metabolic and physiological impact of probiotics or direct-fed-microbials on
poultry: A brief review of current knowledge. International Journal of Poultry Science 6(10): 694-704.
Davani-Davari, D., Negahdaripour, M.,
Karimzadeh, I., Seifan, M., Mohkam,
M., Masoumi, S.J., Berenjian, A. & Ghasemi, Y.
2019. Prebiotics: Definition, types, sources, mechanisms, and clinical
applications. Foods 8(3): 92.
de Jesus Raposo, M.F., De Morais, A.M.M.B. & De Morais, R.M.S.C.
2016. Emergent sources of prebiotics: Seaweeds and microalgae. Marine Drugs 14(2): 27.
de Medeiros, V.P., de Souza, E.L., de Albuquerque, T.M., da Costa Sassi,
C.F., dos Santos Lima, M., Sivieri, K., Pimentel,
T.C. & Magnani, M. 2021. Freshwater microalgae biomasses exert a prebiotic
effect on human colonic microbiota. Algal
Research 60: 102547.
Fabian, G., Farago, N., Feher, L.Z., Nagy, L.I., Kulin, S., Kitajka, K., Bito, T., Tubak, V.,
Katona, R.L., Tiszlavicz, L. & Puskas, L.G. 2011.
High-density real-time PCR-based in vivo toxicogenomic screen to predict organ-specific toxicity. International Journal of Molecular Sciences 12(9): 6116-6134.
Furness, J.B. 2000. Types of neurons in the enteric nervous system. Journal of the Autonomic Nervous System 81(1-3): 87-96.
Giriwono, P.E., Iskandriati, D., Tan, C.P. & Andarwulan, N. 2019. Sargassum seaweed as a source of anti-inflammatory substances and the potential insight
of the tropical species: A review. Marine
Drugs 17(10): 590.
Gregory, J.M., Whiten, D.R., Brown, R.A., Barros, T.P., Kumita, J.R., Yerbury, J.J.,
Satapathy, S., McDade, K., Smith, C., Luheshi, L.M.,
Dobson, C.M. & Wilson, M.R. 2017. Clusterin protects neurons against intracellular proteotoxicity. Acta Neuropathologica Communications 5(1): 81.
Higgins, P.D. & Johanson, J.F. 2004. Epidemiology of constipation in
North America: A systematic review. American
Journal of Gastroenterology 99(4): 750-759.
Jiang, F., Gao, Y., Dong, C. & Xiong, S. 2018. ODC1 inhibits the
inflammatory response and ROS-induced apoptosis in macrophages. Biochemical and Biophysical Research
Communications 504(4): 734-741.
Khuituan, P., Huipao, N., Jeanmard, N., Thantongsakul, S., Promjun, W.,
Chuthong, S., Tipbunjong, C. & Peerakietkhajorn, S. 2022. Sargassum plagiophyllum extract enhances
colonic functions and modulates gut microbiota in constipated mice. Nutrients 14(3): 496.
Koh, E.J., Shin, K.S., Sunwoo, I.Y., Kim, J. & Choi, W.Y. 2024.
Brown seaweed byproduct extracts improve intestinal motility and
auto-inflammation in mice with loperamide-induced constipation. Foods 13(13): 2037.
Lee, H., Selvaraj, B. & Lee, J.W. 2021. Anticancer effects of
seaweed-derived bioactive compounds. Applied
Sciences 11(23): 11261.
Lee, Y.H., Kim, H.R., Yeo, M.H., Kim, S.C., Hyun, H.B., Ham, Y.M., Jung,
Y.H., Kim, H.S. & Chang, K.S. 2023. Anti-obesity potential of Sargassum horneri and Ulva australis extracts: Study in vitro and in vivo. Applied Sciences 13(15): 8951.
Li, R.W. & Li, C. 2006. Butyrate induces profound changes in gene
expression related to multiple signal pathways in bovine kidney epithelial
cells. BMC Genomics 7: 234.
Li, R., Yang, W., Yin, Y., Ma, X., Zhang, P. & Tao, K. 2021. 4-OI
attenuates carbon tetrachloride-induced hepatic injury via regulating oxidative
stress and the inflammatory response. Frontiers
in Pharmacology 12: 651444.
Motshakeri, M., Ebrahimi, M., Goh, Y.M., Matanjun, P.
& Mohamed, S. 2013. Sargassum polycystum reduces hyperglycaemia, dyslipidaemia and
oxidative stress via increasing insulin sensitivity in a rat model of type 2
diabetes. Journal of the Science of Food
and Agriculture 93(7): 1772-1778.
Navakanitworakul, R., Wanso, D., Phetcharat,
S., Chumkaew, P. & Mayakun,
J. 2023. Variations in total phenolics in Sargassum plagiophyllum and their cytotoxic activities. ScienceAsia 49: 791-796.
Olson, H., Betton, G., Robinson, D., Thomas, K., Monro, A., Kolaja, G.,
Lilly, P., Sanders, J., Sipes, G., Bracken, W., Dorato, M., Deun, K.V., Smith,
P., Berger, B. & Heller, A. 2000. Concordance of the toxicity of
pharmaceuticals in humans and in animals. Regulatory
Toxicology and Pharmacology 32(1): 56-67.
Prasedya, E.S., Padmi, H., Ilhami,
B.T.K., Martyasari, N.W.R., Sunarwidhi,
A.L., Widyastuti, S., Khairinisa,
M.A., Cokrowati, N., Simangunsong,
E.E. & Frediansyah, A. 2022. Brown macroalgae Sargassum cristaefolium extract inhibits melanin production and cellular oxygen stress in B16F10
melanoma cells. Molecules 27(23):
8585.
Premarathna, A.D., Tuvikene, R., Somasiri,
M.N.R., De Silva, M.L.W.P., Adhikari, R., Ranahewa,
T.H., Wijesundara, R.R.M.K.K., Wijesekera, S.K.,
Dissanayake, I.P.G.H.U., Wangchuk, P., Rjabovs, V.,
Jayasooriya, A.P. & Rajapakse, RPVJ. 2023. A novel therapeutic effect of
mannitol-rich extract from the brown seaweed Sargassum ilicifolium using in vitro and in vivo models. BMC
Complementary Medicine and Therapies 23: 26.
Rodrigues, D., Costa-Pinto, A.R., Sousa, S., Vasconcelos, M.W., Pintado,
M.M., Pereira, L., Rocha-Santos, T.A., Costa, J.P.D., Silva, A.M., Duarte, A.C.
& Gomes, A.M. 2019. Sargassum muticum and Osmundea pinnatifida enzymatic extracts: Chemical, structural, and cytotoxic characterization. Marine Drugs 17(4): 209.
Sakena, K., Peerakietkhajorn, S., Siringoringo, B., Muangnil, P., Wichienchot, S. & Khuituan,
P. 2020. Oligosaccharides from Gracilaria fisheri ameliorate gastrointestinal dysmotility and gut
dysbiosis in colitis mice. Journal of
Functional Foods 71: 104021.
Santos, E.W., de Oliveira, D.C., Hastreiter, A., da Silva, G.B., de
Oliveira Beltran, J.S., Tsujita, M., Crisma, A.R., Neves, S.M.P., Fock, R.A.
& Borelli, P. 2016. Hematological and biochemical
reference values for C57BL/6, Swiss Webster and BALB/c mice. Brazilian Journal of Veterinary Research and
Animal Science 53(2): 138-145.
Sato, M., Toyama, T., Kim, M.S., Lee, J.Y., Hoshi, T., Miura, N., Naganuma, A. & Hwang, G.W. 2020. Increased putrescine levels due to
ODC1 overexpression prevents mitochondrial dysfunction-related apoptosis
induced by methylmercury. Life Sciences 256: 118031.
Sengkhim, R., Peerakietkhajorn, S., Jeanmard, N., Pongparadon, S., Khuituan, P., Thitiphatphuvanon, T., Surinlert,
P. & Tipbunjong, C. 2021. Effects of Sargassum plagiophyllum extract pretreatment on tissue histology of constipated mice. Tropical Journal of Pharmaceutical Research 20(11): 2339-2346.
Shaidullov, I.F., Sorokina, D.M., Sitdikov, G., Hermann, A., Abdulkhakov,
S. R. & Sitdikova, G.F. 2021. Short chain fatty
acids and colon motility in a mouse model of irritable bowel syndrome. BMC Gastroenterology 21(1): 37.
Sinurat, E., Marraskuranto, E. & Subaryono, S. 2021. Evaluation of fucoidan from Sargassum duplicatum on performance immune responses, serum biochemical, and hematological testing in rats. Journal of Applied
Pharmaceutical Science 11(6): 146-153.
Siringoringo, B., Huipao, N., Tipbunjong,
C., Nopparat, J., Wichienchot,
S., Hutapea, A.M. & Khuituan,
P. 2021. Gracilaria fisheri oligosaccharides ameliorate inflammation and colonic epithelial barrier
dysfunction in mice with acetic acid-induced colitis. Asian Pacific Journal of Tropical Biomedicine 11(10): 440.
Teschke, R., Frenzel, C., Glass, X., Schulze, J. & Eickhoff, A.
2013. Herbal hepatotoxicity: A critical review. British Journal of Clinical Pharmacology 75(3): 630-636.
Tipbunjong, C., Sengkhim, R., Thantongsakul,
S., Peerakietkhajorn, S., Mayakun,
J., Huipao, N. & Khuituan,
P. 2023. Toxicological evaluation of Sargassum plagiophyllum extract in male mice. Tropical Journal of Pharmaceutical Research 22(11): 2319-2326.
Wang, L., Oh, J.Y., Yang, H.W., Hyun, J., Ahn, G., Fu, X., Xu, J., Gao,
X., Cha, S.H. & Jeon, Y.J. 2023. Protective effect of Sargassum fusiforme fucoidan against
ethanol-induced oxidative damage in in
vitro and in vivo models. Polymers 15(8): 1912.
Xu, X., Zhu, R., Ying, J., Zhao, M., Wu, X., Cao, G. & Wang, K.
2020. Nephrotoxicity of herbal medicine and its prevention. Frontiers in Pharmacology 11: 569551.
Yang, B., Xie, Y., Guo, M., Rosner, M.H., Yang, H. & Ronco, C. 2018.
Nephrotoxicity and Chinese herbal medicine. Clinical
Journal of the American Society of Nephrology 13(10): 1605-1611.
Yang, J., Yu, Y.L., Jin, Y., Zhang, Y. & Zheng, C.Q. 2016. Clinical
characteristics of drug-induced liver injury and primary biliary cirrhosis. World Journal of Gastroenterology 22(33): 7579-7586.
Yuvaraj, N., Kanmani, P., Satishkumar, R., Paari, A., Pattukumar, V. & Arul, V. 2013. Antinociceptive and
anti-inflammatory activities of Sargassum wightii and Halophila
ovalis sulfated polysaccharides in experimental
animal models. Journal of Medicinal Food 16(8): 740-748.
Zhang, L., Liu, C., Yin, L., Huang, C. & Fan, S. 2023. Mangiferin relieves CCl4-induced liver fibrosis in mice. Scientific Reports 13(1): 4172.
Zheng, Z., Tang, J., Hu, Y. & Zhang, W. 2022. Role of gut
microbiota-derived signals in the regulation of gastrointestinal motility. Frontiers in Medicine 9: 961703.
*Corresponding author;
email: chittipong.t@psu.ac.th